Files
Northern-Thailand-Ping-Rive…/SQLITE_MIGRATION.md
grabowski 6c7c128b4d Major refactor: Migrate to uv, add PostgreSQL support, and comprehensive tooling
- **Migration to uv package manager**: Replace pip/requirements with modern pyproject.toml
  - Add pyproject.toml with complete dependency management
  - Update all scripts and Makefile to use uv commands
  - Maintain backward compatibility with existing workflows

- **PostgreSQL integration and migration tools**:
  - Enhanced config.py with automatic password URL encoding
  - Complete PostgreSQL setup scripts and documentation
  - High-performance SQLite to PostgreSQL migration tool (91x speed improvement)
  - Support for both connection strings and individual components

- **Executable distribution system**:
  - PyInstaller integration for standalone .exe creation
  - Automated build scripts with batch file generation
  - Complete packaging system for end-user distribution

- **Enhanced data management**:
  - Fix --fill-gaps command with proper method implementation
  - Add gap detection and historical data backfill capabilities
  - Implement data update functionality for existing records
  - Add comprehensive database adapter methods

- **Developer experience improvements**:
  - Password encoding tools for special characters
  - Interactive setup wizards for PostgreSQL configuration
  - Comprehensive documentation and migration guides
  - Automated testing and validation tools

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-09-26 15:10:10 +07:00

278 lines
6.6 KiB
Markdown

# SQLite to PostgreSQL Migration Guide
This guide helps you migrate your existing SQLite water monitoring data to PostgreSQL.
## Quick Migration
### 1. Analyze Your SQLite Database (Optional)
First, check what's in your SQLite database:
```bash
# Analyze without migrating
make analyze-sqlite
# Or specify a specific SQLite file
uv run python scripts/migrate_sqlite_to_postgres.py --dry-run /path/to/your/database.db
```
### 2. Run the Migration
```bash
# Auto-detect SQLite file and migrate
make migrate-sqlite
# Or specify a specific SQLite file
uv run python scripts/migrate_sqlite_to_postgres.py /path/to/your/database.db
```
The migration tool will:
- ✅ Connect to both databases
- ✅ Analyze your SQLite schema automatically
- ✅ Migrate station information
- ✅ Migrate all measurement data in batches
- ✅ Handle different SQLite table structures
- ✅ Verify the migration results
- ✅ Generate a detailed log file
## What Gets Migrated
### Station Data
- Station IDs and codes
- Thai and English names
- Coordinates (latitude/longitude)
- Geohash data (if available)
- Creation/update timestamps
### Measurement Data
- Water level readings
- Discharge measurements
- Discharge percentages
- Timestamps
- Station associations
- Data quality status
## Supported SQLite Schemas
The migration tool automatically detects and handles various SQLite table structures:
### Modern Schema
```sql
-- Stations
stations: id, station_code, station_name_th, station_name_en, latitude, longitude, geohash
-- Measurements
water_measurements: timestamp, station_id, water_level, discharge, discharge_percent, status
```
### Legacy Schema
```sql
-- Stations
water_stations: station_id, station_code, station_name, lat, lon
-- Measurements
measurements: timestamp, station_id, water_level, discharge, discharge_percent
```
### Simple Schema
```sql
-- Any table with basic water level data
-- The tool will adapt and map columns automatically
```
## Migration Process
### Step 1: Database Connection
- Connects to your SQLite database
- Verifies PostgreSQL connection
- Validates configuration
### Step 2: Schema Analysis
- Scans SQLite tables and columns
- Reports data counts
- Identifies table structures
### Step 3: Station Migration
- Extracts station metadata
- Maps to PostgreSQL format
- Handles missing data gracefully
### Step 4: Measurement Migration
- Processes data in batches (1000 records at a time)
- Converts timestamps correctly
- Preserves all measurement values
- Shows progress during migration
### Step 5: Verification
- Compares record counts
- Validates data integrity
- Reports migration statistics
## Command Options
```bash
# Basic migration (auto-detects SQLite file)
uv run python scripts/migrate_sqlite_to_postgres.py
# Specify SQLite database path
uv run python scripts/migrate_sqlite_to_postgres.py /path/to/database.db
# Dry run (analyze only, no migration)
uv run python scripts/migrate_sqlite_to_postgres.py --dry-run
# Custom batch size for large databases
uv run python scripts/migrate_sqlite_to_postgres.py --batch-size 5000
```
## Auto-Detection
The tool automatically searches for SQLite files in common locations:
- `water_levels.db`
- `water_monitoring.db`
- `database.db`
- `../water_levels.db`
## Migration Output
The tool provides detailed logging:
```
========================================
SQLite to PostgreSQL Migration Tool
========================================
SQLite database: water_levels.db
PostgreSQL: postgresql
Step 1: Connecting to databases...
Connected to SQLite database: water_levels.db
Connected to PostgreSQL database
Step 2: Analyzing SQLite database structure...
Table 'stations': 8 columns, 25 rows
Table 'water_measurements': 7 columns, 15420 rows
Step 3: Migrating station data...
Migrated 25 stations
Step 4: Migrating measurement data...
Found 15420 measurements to migrate
Migrated 1000/15420 measurements
Migrated 2000/15420 measurements
...
Successfully migrated 15420 measurements
Step 5: Verifying migration...
SQLite stations: 25
SQLite measurements: 15420
PostgreSQL measurements retrieved: 15420
Migrated stations: 25
Migrated measurements: 15420
========================================
MIGRATION COMPLETED
========================================
Duration: 0:02:15
Stations migrated: 25
Measurements migrated: 15420
No errors encountered
```
## Error Handling
The migration tool is robust and handles:
- **Missing tables** - Tries alternative table names
- **Different column names** - Maps common variations
- **Missing data** - Uses sensible defaults
- **Invalid timestamps** - Attempts multiple date formats
- **Connection issues** - Provides clear error messages
- **Large datasets** - Processes in batches to avoid memory issues
## Log Files
Migration creates a detailed log file:
- `migration.log` - Complete migration log
- Shows all operations, errors, and statistics
- Useful for troubleshooting
## Troubleshooting
### Common Issues
**1. SQLite file not found**
```
SQLite database file not found. Please specify the path:
python migrate_sqlite_to_postgres.py /path/to/database.db
```
**Solution**: Specify the correct path to your SQLite file
**2. PostgreSQL not configured**
```
Error: PostgreSQL not configured. Set DB_TYPE=postgresql in your .env file
```
**Solution**: Ensure your .env file has `DB_TYPE=postgresql`
**3. Connection failed**
```
Database connection error: connection refused
```
**Solution**: Check your PostgreSQL connection settings
**4. No tables found**
```
Could not analyze SQLite database structure
```
**Solution**: Verify your SQLite file contains water monitoring data
### Performance Tips
- **Large databases**: Use `--batch-size 5000` for faster processing
- **Slow networks**: Reduce batch size to `--batch-size 100`
- **Memory issues**: Process smaller batches
## After Migration
Once migration is complete:
1. **Verify data**:
```bash
make run-test
make run-api
```
2. **Check the web interface**: Latest readings should show your migrated data
3. **Backup your SQLite**: Keep the original file as backup
4. **Update configurations**: Remove SQLite references from configs
## Rollback
If you need to rollback:
1. **Clear PostgreSQL data**:
```sql
DELETE FROM water_measurements;
DELETE FROM stations;
```
2. **Switch back to SQLite**:
```bash
# In .env file
DB_TYPE=sqlite
WATER_DB_PATH=water_levels.db
```
3. **Test the rollback**:
```bash
make run-test
```
The migration tool is designed to be safe and can be run multiple times - it handles duplicates appropriately.
## Next Steps
After successful migration:
- Set up automated backups for PostgreSQL
- Configure monitoring and alerting
- Consider data retention policies
- Update documentation references