This commit is contained in:
Daniel Barlow
2023-11-10 21:17:20 +00:00
parent 22882dabee
commit 7cfb92e3ce
14 changed files with 102 additions and 58 deletions

View File

@@ -0,0 +1,117 @@
{
config
, pkgs
, lib
, ...
}:
let
inherit (lib) mkOption types concatStringsSep;
inherit (config.boot) tftp;
in {
options.system.outputs = {
firmware = mkOption {
type = types.package;
internal = true; # component of flashimage
description = ''
Binary image (combining kernel, FDT, rootfs, initramfs
if needed, etc) for the target device.
'';
};
flash-scr = mkOption {
type = types.package;
internal = true; # component of flashimage
description = ''
Copy-pastable U-Boot commands to TFTP download the
image and write it to flash
'';
};
flashimage = mkOption {
type = types.package;
description = ''
flashimage
**********
This creates an image called :file:`firmware.bin` suitable for
squashfs or jffs2 systems. It can be flashed from U-Boot (if
you have a serial console connection), or on some devices from
the vendor firmware, or from a Liminix kexecboot system.
If you are flashing from U-Boot, the file
:file:`flash.scr` is a sequence of commands
which you can paste at the U-Boot prompt to
to transfer the firmware file from a TFTP server and
write it to flash. **Please read the script before
running it: flash operations carry the potential to
brick your device**
.. NOTE::
TTL serial connections typically have no form of flow
control and so don't always like having massive chunks of
text pasted into them - and U-Boot may drop characters
while it's busy. So don't necessarily expect to copy-paste
the whole of :file:`flash.scr` into a terminal emulator and
have it work just like that. You may need to paste each
line one at a time, or even retype it.
'';
};
};
config = {
kernel = {
config = {
MTD_SPLIT_UIMAGE_FW = "y";
} // lib.optionalAttrs (pkgs.stdenv.isMips) {
# https://stackoverflow.com/questions/26466470/can-the-logical-erase-block-size-of-an-mtd-device-be-increased
MTD_SPI_NOR_USE_4K_SECTORS = "n";
};
};
programs.busybox.applets = [
"flashcp"
];
system.outputs = {
firmware =
let
o = config.system.outputs;
bs = config.hardware.flash.eraseBlockSize;
in pkgs.runCommand "firmware" {} ''
dd if=${o.uimage} of=$out bs=${bs} conv=sync
dd if=${o.rootfs} of=$out bs=${bs} conv=sync,nocreat,notrunc oflag=append
'';
flashimage =
let o = config.system.outputs; in
# could use trivial-builders.linkFarmFromDrvs here?
pkgs.runCommand "flashimage" {} ''
mkdir $out
cd $out
ln -s ${o.firmware} firmware.bin
ln -s ${o.rootfs} rootfs
ln -s ${o.kernel} vmlinux
ln -s ${o.manifest} manifest
ln -s ${o.kernel.headers} build
ln -s ${o.uimage} uimage
ln -s ${o.dtb} dtb
ln -s ${o.flash-scr} flash.scr
'';
flash-scr =
let
inherit (pkgs.lib.trivial) toHexString;
inherit (config.hardware) flash;
in
pkgs.buildPackages.runCommand "" {} ''
imageSize=$(stat -L -c %s ${config.system.outputs.firmware})
cat > $out << EOF
setenv serverip ${tftp.serverip}
setenv ipaddr ${tftp.ipaddr}
tftp 0x$(printf %x ${tftp.loadAddress}) result/firmware.bin
erase 0x$(printf %x ${flash.address}) +${flash.size}
cp.b 0x$(printf %x ${tftp.loadAddress}) 0x$(printf %x ${flash.address}) \''${filesize}
echo command line was ${builtins.toJSON (concatStringsSep " " config.boot.commandLine)}
EOF
'';
};
};
}

127
modules/outputs/ubimage.nix Normal file
View File

@@ -0,0 +1,127 @@
{
config
, pkgs
, lib
, ...
}:
let
inherit (lib) mkIf mkEnableOption mkOption types concatStringsSep;
cfg = config.boot.tftp;
instructions = pkgs.writeText "env.scr" ''
setenv serverip ${cfg.serverip}
setenv ipaddr ${cfg.ipaddr}
setenv loadaddr ${cfg.loadAddress}
'';
in {
options.system.outputs = {
ubimage = mkOption {
type = types.package;
description = ''
ubimage
*******
First-time installation of a UBIFS Liminix system presently can only
be done from the U-Boot command line (or from a ramdisk-based recovery
system: see "kexecboot" but we don't have detailed instructions for
this process yet).
These steps were tested on a Belkin RT3200 (also known as Linksys
E8450). Other devices may be set up differently, so use them as
inspiration and don't just paste them blindly. Consult the Liminix
manual for how to connect a serial cable to your device and get into
U-Boot
1) determine which MTD device is being used for UBI and the partition name:
.. code-block:: console
uboot> ubi part
Device 0: ubi0, MTD partition ubi
In this case the important value is ``ubi0``
2) list the available volumes and create a new one on which to install Liminix
.. code-block:: console
uboot> ubi info l
[ copious output scrolls past ]
Expect there to be existing volumes and for some or all of them to be
important. Unless you know what you're doing, don't remove anything
whose name suggests it's related to uboot, or any kind of backup or
recovery partition. To see how much space is free:
.. code-block:: console
uboot> ubi info
[ ... ]
UBI: available PEBs: 823
Now we can make our new root volume
.. code-block:: console
uboot> ubi create liminix -
3) transfer the root filesystem from the build system and write it
to the new volume. Paste the environment variable settings from
:file:`result/env.scr` into U-Boot, then run
.. code-block:: console
uboot> tftpboot ''${loadaddr} result/rootfs
uboot> ubi write ''${loadaddr} liminix $filesize
Now we have the root filesystem installed on the device. You
can even mount it and poke around using ``ubifsmount ubi0:liminix;
ubifsls /``
4) optional: before you configure the device to boot into Liminix
automatically, you can try booting it by hand to see if it works:
.. code-block:: console
uboot> ubifsmount ubi0:liminix
uboot> ubifsload ''${loadaddr} boot/uimage
uboot> bootm ''${loadaddr}
Once you've done this and you're happy with it, reset the device to
U-Boot. You don't need to recreate the volume but you do need to
repeat step 3.
5) Instructions for configuring autoboot are likely to be very
device-dependent. On the Linksys E8450/Belkin RT3200, the environment
variable `boot_production` governs what happens on a normal boot, so
you could do
.. code-block:: console
uboot> setenv boot_production 'led $bootled_pwr on ; ubifsmount ubi0:liminix; ubifsload ''${loadaddr} boot/uimage; bootm ''${loadaddr}'
On other devices, some detective work may be needed. Try running
`printenv` and look for likely commands, try looking at the existing
boot process, maybe even try looking for documentation for that device.
6) Now you can reboot the device into Liminix
.. code-block:: console
uboot> reset
'';
};
};
config = mkIf (config.rootfsType == "ubifs") {
system.outputs = {
ubimage =
let o = config.system.outputs; in
pkgs.runCommand "ubimage" {} ''
mkdir $out
cd $out
ln -s ${o.rootfs} rootfs
ln -s ${instructions} env.scr
'';
};
};
}