add new Installation guide

move the u-boot/serial stuff here from development, as the
reality of Liminix development in 2024 is that serial connection
is still the smoothest installation method
This commit is contained in:
Daniel Barlow
2024-07-11 23:31:00 +01:00
parent 2ce361d4e3
commit 241f1013ed
4 changed files with 174 additions and 192 deletions

View File

@@ -116,140 +116,6 @@ human-readable format, use :command:`s6-tai64nlocal`.
Flashing and updating
*********************
Flashing from Liminix
=====================
The flash procedure from an existing Liminix-system has two steps.
First we reboot the device (using "kexec") into an "ephemeral"
RAM-based version of the new configuration, then when we're happy it
works we can flash the image - and if it doesn't work we can reboot
the device again and it will boot from the old image.
Building the RAM-based image
----------------------------
To create the ephemeral image, build ``outputs.kexecboot`` instead of
``outputs.default``. This generates a directory containing the root
filesystem image and kernel, along with an executable called `kexec`
and a `boot.sh` script that runs it with appropriate arguments.
For example
.. code-block:: console
nix-build -I liminix-config=./examples/arhcive.nix \
--arg device "import ./devices/gl-ar750"
-A outputs.kexecboot && \
(tar chf - result | ssh root@the-device tar -C /run -xvf -)
and then login to the device and run
.. code-block:: console
cd /run/result
sh ./boot.sh .
This will load the new kernel and map the root filesystem into a RAM
disk, then start executing the new kernel. *This is effectively a
reboot - be sure to close all open files and finish anything else
you were doing first.*
If the new system crashes or is rebooted, then the device will revert
to the old configuration it finds in flash.
Building the second (permanent) image
-------------------------------------
While running in the kexecboot system, you can build the permanent
image and copy it to the device with :command:`ssh`
.. code-block:: console
build-machine$ nix-build -I liminix-config=./examples/arhcive.nix \
--arg device "import ./devices/gl-ar750"
-A outputs.default && \
(tar chf - result | ssh root@the-device tar -C /run -xvf -)
build-machine$ tar chf - result/firmware.bin | \
ssh root@the-device tar -C /run -xvf -
Next you need to connect to the device and locate the "firmware"
partition, which you can do with a combination of :command:`dmesg`
output and the contents of :file:`/proc/mtd`
.. code-block:: console
<5>[ 0.469841] Creating 4 MTD partitions on "spi0.0":
<5>[ 0.474837] 0x000000000000-0x000000040000 : "u-boot"
<5>[ 0.480796] 0x000000040000-0x000000050000 : "u-boot-env"
<5>[ 0.487056] 0x000000050000-0x000000060000 : "art"
<5>[ 0.492753] 0x000000060000-0x000001000000 : "firmware"
# cat /proc/mtd
dev: size erasesize name
mtd0: 00040000 00001000 "u-boot"
mtd1: 00010000 00001000 "u-boot-env"
mtd2: 00010000 00001000 "art"
mtd3: 00fa0000 00001000 "firmware"
mtd4: 002a0000 00001000 "kernel"
mtd5: 00d00000 00001000 "rootfs"
Now run (in this example)
.. code-block:: console
flashcp -v firmware.bin /dev/mtd3
"I know my new image is good, can I skip the intermediate step?"
----------------------------------------------------------------
In addition to giving you a chance to see if the new image works, this
two-step process ensures that you're not copying the new image over
the top of the active root filesystem. Sometimes it works, but you
will at least need physical access to the device to power-cycle it
because it will be effectively frozen afterwards.
Flashing from the boot monitor
==============================
If you are prepared to open the device and have a TTL serial adaptor
of some kind to connect it to, you can probably use U-Boot and a TFTP
server to download and flash the image. This is quite
hardware-specific, and sometimes involves soldering: please refer
to :ref:`serial`.
Flashing from OpenWrt
=====================
.. CAUTION:: Untested! A previous version of these instructions
(without the -e flag) led to bricking the device
when flashing a jffs2 image. If you are reading
this message, nobody has yet reported on whether the
new instructions are any better.
If your device is running OpenWrt then it probably has the
:command:`mtd` command installed. After transferring the image onto the
device using e.g. :command:`ssh`, you can run it as follows:
.. code-block:: console
mtd -e -r write /tmp/firmware.bin firmware
The options to this command are for "erase before writing" and "reboot
after writing".
For more information, please see the `OpenWrt manual <https://openwrt.org/docs/guide-user/installation/sysupgrade.cli>`_ which may also contain (hardware-dependent) instructions on how to flash an image using the vendor firmware - perhaps even from a web interface.
Updating an installed system (JFFS2)
************************************